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Abstract

We present a novel approach for the visualization of fracture processes in peridynamics simulations. In peridynamics simulation,
materials are represented by material points linked with bonds, providing complex fracture behavior. Our approach first extracts the
cracks from each time step by means of height ridge extraction. To avoid deterioration of the structures, we propose an approach
to extract ridges from these data without resampling. The extracted crack geometries are then combined into a spatiotemporal
structure, with special focus on temporal coherence and robustness. We then show how this structure can be used for various visu-
alization approaches to reveal fracture dynamics, with a focus on physical mechanisms. We evaluate our approach and demonstrate

its utility by means of different data sets.
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1. Introduction

In engineering and material science, cracks and fractures in
solids are of great interest. One way to model and simulate frac-
tures is the recently developed peridynamics (PD) theory [1], a
non-local generalization of continuum mechanics with a focus
on discontinuous solutions as they arise in fracture mechanics.
Peridynamics simulation provides the process of fracture de-
velopment over time, from initial cracks to complete fracture
growth. In peridynamics simulation, materials are represented
by material points linked with bonds. The bonds are defined
to break irreversibly if the displacement between the respec-
tive material points exceeds a certain limit, providing complex
fracture behavior in arbitrarily-shaped objects. In peridynamics
data, fractures are implicitly modeled through a damage field,
which, for each material points, gives the fraction of broken
bonds to the initial number of bonds.

Domain experts in the field of peridynamics are highly in-
terested in gaining insights into the fracturing process to eval-
uate and refine their material models. Previous to our work,
fracture progression in peridynamics had been mostly exam-
ined through direct depiction of the damage field [2, 3, 4, 5].
This was achieved by visualizing the damage, typically using
a direct rendering of the nodes colored by their damage (the
percentage of broken bonds), as shown in Figure 1a. However,
this visualization approach does not allow one to understand the
internal fracture progression within the material, as only bound-
ary nodes are visible. The clear structure of the fracture cannot
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be seen. It therefore requires tedious manual analysis to deter-
mine the location of crack tips, and it renders the identification
of fragments difficult. It puts focus on the local damage at the
material points, while the “global” progression of the cracks is
difficult to see. Most importantly, this merely visual representa-
tion cannot be used for further analysis tasks, like the estimation
of fracture progression velocity.

For domain scientists, it is an important aspect to see the
crack surfaces between the material points to understand their
growth and bifurcation. Of special interest is therefore the ex-
traction and visualization of the crack surface, its temporal pro-
gression, and its growth velocity over time. This allows for a
comparison to results of real experiments and to calibrate the
model parameters to match real materials [4]. Domain scien-
tists also want to examine how the stress behaves at the surface
and near the crack front to obtain a deeper understanding of the
fracture process.

To address these demands, we propose to approximate frac-
ture geometry from the damage field by means of height ridge
extraction. By extracting fracture geometry for every time step,
we would be able to visualize the temporal progression of the
fracture, but the ridge extraction process would usually not be
temporally stable. We therefore propose a technique to pro-
gressively combine ridges into a single reference state to ob-
tain a temporally stable representation of fracture growth. With
this technique, we can visualize the temporal progression of the
fracture and estimate fracture growth velocity. Furthermore, we
can visualize the stress tensor around the growing fractures to
obtain a deeper understanding of the fracture process.

Note that standard ridge surface extraction techniques from
scalar field analysis have to be significantly modified. With
peridynamics, we do not have a traditional mesh, not even an
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(a) Direct rendering with spheres.
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(b) Fracture progression.
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(c) Fracture growth velocity.

Figure 1: Visualization of fracture dynamics in the Plate data set, a peridynamics simulation of a thin plate impacted at its center by a spherical projectile from
above. (a) Direct rendering of the data set using spheres where color indicates damage from blue (no damage) to red (completely broken). (b), (c) Geometry of
the fractures calculated using our temporally stable crack extraction technique. Color in (b) indicates progression of the cracks over time (from blue to red), color
in (c) shows the growth velocity of the crack front (blue slow, red fast). Note that, throughout the paper, we use the Plasma transfer function to visualize temporal

progression, and the Viridis transfer function for rendering growth velocity.

unstructured one. Instead, we have a graph-like setting of nodes
that are connected by bonds not only to neighboring ones, but
to many more which extend well beyond their nearest neigh-
bors. Taking only a scalar damage value per material point
into account is not sufficient. An obvious way out would be
a resampling of the damage field, such as an approximation
on a structured grid. This can be achieved using Sheppard’s
method or radial basis functions, for example. Based on that,
approaches to compute ridges, such as the marching ridges ap-
proach of Furst et al. [6], which requires a structured grid as
input data, could be applied. However, such a resampling step
would introduce additional smoothing and a potentially critical
loss of detail and accuracy, especially if the resolution is too
low compared to the frequencies present in the damage field.
Choosing a very high resolution for the resampling would lead
to increased processing times and prohibitively large memory
consumption. Furthermore, thresholds have to be introduced
and adapted to match tedious manual inspection and automatic
extraction in any case. But these are much better motivated
and justified when working with peridynamics data than with
resampled data. We therefore propose to calculate the ridges
directly from the material points without resampling.

The peridynamics representation of a material by material
points and bonds poses further challenges. Its nature as scat-
tered data makes it hard to obtain stable ridges, as standard
approaches work best on smooth and continuous data. Fur-
thermore, it requires further considerations to obtain temporal
stability of the ridge growth over time. At the point of impact,
scattered material points can change their position significantly,
and the breaking of bonds is a discrete event which leads to non-
smooth behavior of the damage property.

Our contributions are based on joint interdisciplinary work
of researchers from the modeling and the visualization do-
mains. They include:

e The first extraction of fractures on peridynamics data us-
ing height ridges directly on node—bond-based input data
without resampling.

e Assurance of temporal stability by progressively combin-
ing ridges into a reference state over time.

e A spatiotemporal visualization of fracture progression,
growth velocity, and correlation with stress.

Our paper is structured as follows: Section 2 gives an over-
view on related work, in Section 3 a brief introduction to peri-
dynamics is presented. We describe our techniques for height
ridge extraction in Section 4, temporal stability in Section 5,
and fracture progression visualization in Section 6. Section 7
shows the description of the three data sets, which we used in
our visualization, followed by our results. In Section 7.8, our
extracted crack growth velocity of the ridges is compared to
experimental data. Finally, Section 8 concludes our work.

2. Related Work

Ridge extraction. We employ height ridge extraction to
approximate the fracture geometry in peridynamics data. This
result provides the basis for analyzing their temporal progres-
sion, enabling operations like the computation of distances or
the estimation of progression velocity. In other scenarios, in
which such a representation is not required but ridges are used
for rendering only, also implicit approaches like the raycasting
technique of Barakat and Trichoche [7] could be used. Closely
related definitions for height ridges are given by Haralick [8],
Eberly [9], Lindeberg [10], and Schultz et al. [11]. We base
our approach on Eberly’s definition due to its wide use. The
marching ridges method by Furst et al. [6] is somewhat re-
lated to our work, although we extract 2-dimensional height
ridges in 3D by a marching approach on tetrahedral grids based
on marching tetrahedra, instead of user-intervened tracing of
ridges through hexahedral grids. Thus, the most closely related
work is the marching approach by Sadlo et al. [12]. Further, de-
tails on height ridge extraction and filtering can also be found
in the work by Peikert and Sadlo [13]. Ridge extraction has
been employed in various application domains. Kindlmann et
al. [14] used ridge extraction to find skeletal structures in mag-
netic resonance imaging diffusion tensor data. Surface recon-
struction from point cloud density using ridge extraction was
described by SiiBmuth and Greiner [15]. Wu et al. [16] present
improvements to extract boundary surfaces from deformable
bodies with changing topology (e.g., due to cuts and incisions)



both more accurately and efficiently. While their problem sce-
narios and goals significantly differ from ours, there are some
conceptual similarities with respect to surface reconstruction.
However, while they aim to represent boundary surfaces from
uniform grids (with linked grid cells) that are accurately aligned
with a user-defined cut (and they specifically design their tech-
niques to achieve that), we extract fractures from scattered data
values given at the material point positions from a peridynamics
simulation, and we have no additional higher-resolution infor-
mation available to incorporate.

Height ridge surface extraction in space-time has been em-
ployed by Bachthaler et al. [17] for analyzing the dynamics
within Lagrangian coherent structures, and Hefel et al. [18]
for analyzing wave propagation. However, none of the above
approaches addressed robust temporal extraction in 3D space.

Fracture in Computer Graphics. Physics-based anima-
tion of deforming plastic materials and fracture effects in com-
puter graphics was introduced by Terzopoulos et al. [19] and de-
veloped further to model brittle fracture by O’Brien et al. [20].
Meshless methods have been introduced to computer graphics
by Desbrun et al. [21], who model soft inelastic materials with
implicit surfaces. Miiller et al. [22] present a method for mod-
eling and animating point-based elastically and plastically de-
forming objects, which was extended by Pauly et al. [23] to
simulate fracturing solids, where fracture surfaces were rep-
resented using elliptical splats. Brittle fracture using linear
elastic fracture mechanics was recently described by Hahn et
al. [24] who model the crack front as a Lagrangian flow to de-
scribe fracture dynamics. Peridynamics simulations are some-
what akin to spring—mass models which were used by Hirota
et al. [25] to model cracking behavior. Peridynamics simula-
tion for animation of brittle fracture was recently revisited by
Levine et al. [26], who also present different strategies for ob-
taining surface geometry for rendering. They model the surface
of pieces falling apart; in contrast, we focus on the crack prop-
agation inside the material before separation. Extraction of sur-
face geometry from peridynamics data was recently described
by Watcharopas et al. [27]. They also use a tetrahedral mesh
from the given material point set but obtain fracture geometry
from the connectivity by splitting the tetrahedra, whereas we
propose the extraction of fracture geometry as height ridges of
the damage field. Fore more details we refer to the survey of
Wau et al. [28].

Temporal Development. In this paper, we extract ridges
as a basis for analyzing the temporal development in the data.
Likewise, there is a large body of work relying on different
kinds of extracted features. Here, a large body of work is based
on analyzing the similarity of time activity curves or similar
measures that describes each voxel’s (or voxel a block’s) time
series [29, 30, 31]. Schneider et al. [32] compare scalar fields
on the basis of the largest contours. Widanagamaachchi et
al. [33] employ tracking graphs of features to visualize large-
scale time-varying data. Frey et al. [34] present a visualization
approach based on similarity matrices that allows for detecting
and exploring similarity in the temporal variation of field data.

For the presentation of temporal developments on the ba-
sis of features, we employ different visualization techniques on
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Figure 2: The continuum in the reference configuration Qo with the finite inter-
action zone of length & for the material point at X. All material points inside
the interaction zone B (X) of X are connected with bonds to exchange forces.

crack surfaces to visualize flow velocities, eigenvectors, etc.
Alternative approaches for the visualization of time-varying
data include illustration-inspired techniques like speed lines or
flow ribbons [35]. Lu and Shen [36] propose interactive sto-
ryboards that compose sample volume renderings and descrip-
tive geometric primitives. Bach et al. review temporal data vi-
sualization techniques by interpreting them as series of opera-
tions performed on a space-time cube [37] (e.g., Woodring and
Shen [38] consider time-varying (volumetric) data as a four-
dimensional data field, and apply high-dimensional slicing and
projection techniques).

In this work, we also employ multi-field visualization, e.g.,
to jointly visualize fracture progression and stress. Among oth-
ers, Lee and Shen [39] identify and visualize trend relation-
ships in multivariate time-varying data. Our approach can fur-
ther be used for comparative visualization and analytics to sup-
port the understanding of similarities and differences of a col-
lection of peridynamics data sets. For comparative visualiza-
tion, VisTrails provides a framework for comparing visualiza-
tion results with highly customizable parameter changes: e.g.,
mesh discretization, isovalue, or manually adjusted visualiza-
tion pipelines [40].

3. Peridynamics

Here, we review fundamentals in peridynamics that we use
in the following for the simulation of cracks and fractures in
solids. The principle of peridynamics is that material points in-
side an interaction zone Bg(X) are connected with bonds and
exchange forces (Figure 2). The bond between two material
points is broken after its stretch exceeds the critical value for
bond stretch s.. Thus, the damage ¢(¢,X) of a material point is
defined by the ratio between broken bonds at time ¢ and the ini-
tial number of bonds in the interaction zone Bg(X). Figure la
shows a simple visualization with spheres at the actual posi-
tion x(¢,X), colorized with the damage ¢(¢,X) from blue (all
initial bonds exists) to red (all initial bonds broken). The peri-
dynamic equation of motion (1) delivers the acceleration a(z,X)
for a material point in the reference configuration Q by the ex-
change of a pairwise force f with all material points inside the



finite interaction zone

p(X)a(t,X) = / £(,x(1,X') — x(1,X), X' — X) dX' + b(z,X).
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Here, b(t,X) denotes a external volume force, e.g., for model-
ing the impact of a projectile. Despite the force and the acceler-
ation, Table 1 shows additional attributes available per material
point at position X in the reference configuration €. For more
details about peridynamics, we refer for theory to Silling [1]
and to Silling and Askari [41] for numerical details.

3.1. Importance of Crack Surfaces

The initiation of cracks, without any initial description of
the cracks, is one of the benefits of peridynamics. The dam-
age c(t,X) values defined at the material point positions X in-
directly describe the progression of fractures within the object
approximated by the node set for consecutive time steps. On the
one hand, peridynamic is applicable for the initiation of cracks.
On the other hand, the discretization with material points, due to
the weak convergence, is computationally expensive. Thus, it is
not possible to simulate a large structure, e.g, the wing of an air-
plane, with pure peridynamics. Therefore, different approaches
for coupling PD with other computationally cheaper methods,
like finite elements [42, 43, 44, 45] or partition of unity meth-
ods [46, 47, 48], exist. In the area of interest, where a crack may
occur or an initial crack exists, the computationally expensive
peridynamic is simulated and around this area a computation-
ally cheaper method, e.g., finite elements, is applied. In these
approaches, the coupling is done with attributes of the material
points or extracted information of the displacement field of the
material points.

These coupling schemes use the attributes (Table 1) at the
material points or extracted information of the displacement
field. A novel approach would be to use the crack surface for a
“geometrical” coupling. Here, after the fracture has grown and
the changes over time are sufficiently small, the meshed ridges
can be integrated in the mesh of the computationally cheaper
method.

The Kalthoff Winkler experiment is a standard problem in
dynamic fractures and a benchmark for the validation of the
crack angle from the crack to the initial crack or the crack
growth velocity [49, 3]. With the extracted ridges and the re-
sulting crack growth velocity of our technique, we can compare

Table 1: Attributes per material point at location X in peridynamics simulation.

Attribute Symbol Unit
Actual position  x(7,X) € R’ m
Damage c(t,X)eR %
Displacement  d(z,X) € R3 m
Initial position X € R3 m
Velocity v(r,X) e R ms !
Stress o(t,X) eR¥>3  Pa

the crack angle or the crack growth velocity with experimen-
tal data and other simulation techniques, like smoothed-particle
hydrodynamics (SPH) (see Section 7.8).

Obtaining the velocity at the crack front is difficult with the
plain material points of the peridynamic simulation. Fineberg
and Marder [50] emphasize the comparison for predictions of
the linear elastic fracture mechanics (LEFM) theory and exper-
iments. One example is the velocity at the crack front, which
often disagrees with the predictions of the LEFM theory [51].
By estimating the fracture growth velocity, the peridynamics
simulation can be validated against the LEFM theory and the
behavior obtained in the experiments. This would allow us to
see more detailed how the crack velocity behaves.

4. Extraction of Fractures

Our goal is the extraction of fracture geometry from peri-
dynamics data. We propose to approximate the crack geometry
from the scalar-valued damage field given at the material points
using height ridge extraction. The required steps for the extrac-
tion of the crack geometry for one point in time are:

Height ridge extraction (Section 4.1)

Estimation of gradient and Hessian (Section 4.2)
Clipping of Delaunay grid (Section 4.3)

Ridge extraction based on Marching Tetrahedra (Sec-
tion 4.4)

5. Filtering (Section 4.5)

L=

4.1. Height Ridge Extraction

In our implementation, the crack geometry is estimated as
the height ridge surfaces of the damage field c(7,X). Height
ridges are present where the scalar-valued damage field exhibits
a local maximum in at least one direction [9]. Assuming that
the damage is given as a scalar field ¢ : R? = R, let g = V¢
be the gradient of the scalar field and H be its Hessian with
eigenvectors e; and respective eigenvalues A;,i € 1,2,3, which
are sorted such that A; > A, > A3. Then, a height ridge surface
is given by the conditions

g-e3=0 A A3<07 2)

meaning that the first directional derivative in direction e3 is
zero, whereas the second directional derivative in e3-direction
is negative.

4.2. Estimation of Gradient and Hessian

The input for our approach consists of scattered data val-
ues given at the material point positions. In order to obtain
smooth gradients g from the damage field, we estimate them
using least squares approximation [12]. For the calculation, we
collect the neighboring material points for each material point
position within a specific range d,, and use their damage val-
ues as weights to fit the gradient in the least squares sense. The
same approach is used to calculate the Hessian H, where in this
case we use the estimated gradients at the material points as
input. Finally, we calculate the eigenvectors and eigenvalues
from the Hessian at each material point.



(a) Geometry after Delaunay trian-
gulation.

(b) Geometry after clipping.

Figure 3: Tetrahedral mesh of the Bunny data set at r = 890 x 10~ 7s af-
ter Delaunay triangulation (a) and after clipping the cells by maximum edge
length (b), where color indicates damage.

4.3. Clipping of Delaunay Grid

To avoid resampling, we calculate the ridges directly on the
scattered data points. To this end, we create a tetrahedral mesh
from the data points using Delaunay triangulation and then cal-
culate the ridges on the unstructured grid based on the marching
tetrahedra algorithm [52]. Notice that the Voronoi diagram and
thus the Delaunay triangulation is well-defined and robust with
respect to perturbations of the data points [53, 54]. Together
with the fact that Delaunay triangulation guarantees local prop-
erties, it represents a robust means for height ridge extraction
from scattered point data. The Delaunay triangulation is cal-
culated according to Si [55], and produces a convex hull from
the input data points, which can lead to unexpected ridges in
the hull area (cf. Figure 3a). As we are interested in the geom-
etry of the cracks within the object, our solution is to clip the
tetrahedral cells at the boundary area. To identify such cells,
we exploit the fact that cells within the object have a different
shape and size than those at the boundary. Here, we simply use
the maximum edge length and remove tetrahedral cells with a
cell size larger than a threshold d.. This is reasonable, as the
material points within the object are evenly distributed at the
beginning of the simulation and displacement of the material
points within the object during the simulation is limited. The
effect of this clipping step on the Bunny data set is shown in
Figure 3b.

4.4. Ridge extraction based on Marching Tetrahedra

Height ridge extraction according to Eberly [9] is done by
evaluating Equation (2) for each grid cell and checking whether
the ridge crosses one or more of the cell’s edges. This is in-
dicated by a change of the sign of g-e3 from one edge node
to the other, where the intersection point is given by g-e3 =0
and is determined using linear interpolation. Consistent with
the marching tetrahedra algorithm, the edge intersections form
up to two triangles within a tetrahedron. As eigenvectors lack
an orientation and therefore directional derivatives may not be
consistent, we employ principal component analysis to estimate
a common orientation and accordingly flip vectors if required
(similar to Sadlo et al. [12]).

Algorithm 1 Our approach to achieve stable fracture progres-
sion (as discussed in Section 5 and demonstrated in Figure 5).

1: function TEMPORALFRACTUREPROGRESSION(F]))
2: > define reference fracture Fief

3 Fref back(FH) > last fracture of time series is reference
4:  p stabilize w.r.t. Fef

5: F_1+0

6: forte{0...|Fj|—1}do

7 > iterate over time steps (front to back)

8

9

V0

: forallv € vertices(Fref) do > loop over vertices (cf. Fig. 5a)
10: if distance(v, ;) < d, then
11: V«V+y
12: F.<—0
13: for all f € faces(Fef) — Fi—1 do 1> face loop (cf. Fig. 5b)
14: if vertices(f) C V then
15: Fo<—F.+f
16: F; < F;_{ UF, > determine fractures that are both in F and Fyo¢

17:  return F[]

4.5. Filtering

While we use least squares approximation to obtain smooth
gradients and Hessian, variations in the discrete input data can
still lead to unstable ridge detection. To address this, we ap-
ply post-operational filters to the resulting ridge geometry (akin
to Sadlo et al. [12]). The cracks that are approximated by the
ridges can only occur where a minimum damage value is given.
Therefore, we remove all triangles of the ridge where the inter-
polated damage value is below a given threshold for at least one
of the ridge nodes.

Another filtering condition concerns the size of the ridges.
We expect the resulting fracture geometry to be contiguous such
that we can identify fractures by a minimum number of trian-
gles. Ridges below this threshold are most likely not cracks but
visual clutter and can therefore be removed. The number of tri-
angles per ridge is estimated by separating the set of all ridge
triangles into connected components by connected component
labeling.

5. Temporal Fracture Progression

We aim at visualizing the temporal progression of crack
growth through the ridges extracted in each individual time
step. Unfortunately, height ridge surface extraction is sensitive
to noise and small deviations and thus not temporally stable in
general. In particular, the filtering step can cause portions of
cracks to subsequently appear and disappear in cases in which
the filtering values are close to a specified threshold. This re-
sults in flickering when browsing through the ridges and is the
main cause for temporal instability. As these instabilities are
typically small, a simple solution would be to filter w.r.t. size
(cf. Figures 4a and 4b), but then flickering still persists and ac-
tually desired geometry like newly developing cracks are re-
moved as well.



(a) Ridges at r = 690 x 10~ 7s.

(b) Ridges at t = 700 x 10 7s.

(c) Reference at t = 700 x 10~ 7s.

Figure 4: Filtering ridges in each time step (a), (b) may not only remove clutter but also growing cracks (blue). Our approach (c) for temporal stability uses

unfiltered ridges but shows no clutter while all important features are captured.
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(a) Current and reference ridge. (b) Ridge growing process.

Figure 5: Illustration of the ridge growing process. (a) Geometry in the refer-
ence ridges (Frf, blue) is selected based on its distance to the ridges (F;, yellow)
extracted from current time step ¢. (b) Based on this selection, new geometry
(green) is added to F;_; to create the current set F;.

For this, we propose a technique for stabilizing the ridge
extraction over time (Algorithm 1). Our idea is to select a ref-
erence step, and use its crack geometry as a temporally stable
reference for prior time steps. While this could be done in a
streaming fashion as well with minor adjustments, in this pa-
per we concentrate on the a posteriori scenario in which the full
simulation is available at once. This allows us to identify the
time step where the crack growth has come to a complete stop
and then use its crack geometry as a reference. With this ap-
proach, we need to apply the ridge size filter only to remove
visual clutter in the reference state, as shown in Figure 4c. Ge-
ometry from previous time steps is hereby used without apply-
ing the size filter, such that no important feature is missed. This
is motivated by the fact that the ridges which represent cracks
only grow over time, but never shrink again. Therefore, the
ridges F; in each time step ¢ prior to the reference time step can
be regarded as a subset F; € Fi.¢ of the ridges in the reference.
Our approach is based on the following two assumptions (these
are typically fulfilled in our domain of application):

1. cracks grow over time, and once they are there, they do
not disappear anymore,

2. the change of location of generated fractures is negligible
overall (i.e., there is only little “drift”).

Based on these assumptions, in most cases, we can simply
use the last time step as reference Fi.r as it contains all cracks
that have been accumulated over time (Algorithm 1, Line 3).

Note that, as discussed later in Section 7.2, this last considered
time step is not necessarily the last time step of the simulation
input data, but may be chosen to be earlier by the user (e.g., to
save performance because the fracture progression has visibly
come to a stop earlier, or because the structure starts to signif-
icantly degrade after a certain point in time). Fracture geome-
try from the previous time steps is then progressively matched
with this reference to obtain stable ridge growth (Lines 8-16).
At first, we estimate the subset of the reference geometry that
matches the geometry in the current time step. This matching
is done by calculating the Hausdorff distance of the reference
points to the mesh of the current ridges (Lines 9-11, Figure 5a).
Vertices V in the reference state are selected, if their distances
are below a certain threshold d,. The distance threshold d,
is required as the points of the current ridges do not exactly
match the reference points. Among others, the damage field
from which the ridges are extracted is subject to a little drift
due to the displacement of the material points.

Next, the selected vertices determine which faces (trian-
gles) F. are newly added to F; (w.r.t. the previous time step
F;_1, Lines 12-16). For this, we loop over the faces in Fis that
have not yet been selected previously (i.e., Fref — F;—1, Line 13),
and add new faces f for which all vertices are contained in V
(Lines 14 and 15, Figure 5b). Finally, the new set of faces F; is
added to the previous set of faces F;_ to form the face set F; of
the currently considered time step ¢ (Line 16).

6. Visualization of Fracture Progression

To be able to answer research questions regarding fracture
progression, we need to not only provide the crack geometry
for a single step in time, but to visualize the overall progression
of fractures over time. For this, we propose visualization tech-
niques that are based on our temporally stable ridge extraction
technique described in the previous section. These techniques
support the understanding of how cracks and fractures develop.

6.1. Temporal Development of Fractures

The temporally-stable ridge extraction is done by selecting
parts from reference ridges based on their distance to the cur-
rent ridges. The selected parts are added to a growing ridge
representation, that includes the current and all previous ridge
states. Temporal development of fracture growth, as shown in
Figure 1b, is visualized by storing for each vertex at which point



(a) Eigenvectors e of the largest eigenvalue A,.
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(b) Eigenvectors e3 of the smallest eigenvalue A3.

Figure 6: Tensor field lines show the temporal progression of principal stress directions during fracture progression. Time is given in 1 x 10~ 7s.

in time it was added to the growing ridge representation. This
information is used to visualize the temporal development of
the cracks by mapping the obtained time values to color in the
reference state, to which the growing process converges. With
this, the user can directly see at which point in time a certain
ridge fragment was added and can therefore observe the overall
temporal development of the cracks for each point in time.

6.2. Fracture Growth Velocity

In order to estimate the fracture growth velocity, we use the
information, which parts of the reference ridges were added to
the growing ridges. Therefore, we estimate the distances of the
crack fronts to the previous fracture geometry of the growing
ridges, and divide by the period between temporal states, to ob-
tain the growth velocity of the fracture. As shown in Figure 5b,
we first calculate the distance of each new vertex (red) added
to the previous growing ridges (green) using the Hausdorff dis-
tance measure. The velocity of each crack front is then approx-
imated as the largest distance value per fragment, where the
fragments are estimated as the largest connected components,
indicated by red triangles in Figure 5b. Special treatment is
required for new fragments that are not connected to the previ-
ous fracture geometry. Such fragments can appear at relatively
large distances to the growing ridge, and lead to unreasonably
high velocities. We address this problem by checking whether a
new fragment shares at least one vertex with previously added
geometry and otherwise define its growth velocity to be zero.
Overall, we get an individual velocity approximation for each
fragment, as shown in Figure Ic.

In theory, the crack velocity should smoothly increase from
rest to the Rayleigh wave speed. In the experiment, the crack
accelerates rapidly as it grows, then gets slower and reaches a
final velocity lower as the Rayleigh wave speed. These phe-
nomena could be analyzed with our visualization technique and

a domain scientist can get details on how the crack front grows
in the simulation.

6.3. Multi-Field Visualization for Fracture Analysis

Domain scientists are interested in obtaining a deeper un-
derstanding of the fracture process in peridynamics simulation.
This can be achieved by examining physical quantities calcu-
lated during the simulation, where a special focus is on how the
stress behaves at the surfaces and near the crack front. There-
fore, we visualize the stress tensor near the extracted ridge. Fig-
ure 6 shows the temporal progression of the principal stress di-
rections near the ridges using tensor field lines. The seed points
for the tensor field lines are selected from the set of input data
points for the currently processed time step. These data points
are filtered by their distance to the new fragments, with an user-
defined upper and lower bound. Finally, points that are close
to the geometry from the previous step are removed to obtain
only those points that lie ahead of the crack front. During the
ridge growing process, the tensor field lines seeded at the se-
lected data points in each processed time step are collected to
obtain a visualization of the temporal progression of the stress
field during the fracture progression.

The ridges of the damage field together with selected lev-
els of the instant von Mises stress are shown in Figure 7. The
visualization of stress with the distortion energy theory is one
of the most preferred methods for failure analysis in industry.
An engineer is validating the design of his object by checking
if it withstands a prescribed yield stress value for certain condi-
tions. With the selection of isosurfaces the engineer can focus
on the parts of interests and validate the distribution of the von
Misses Stress with respect to the prescribed conditions in the
specification.
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Figure 7: Fracture progression and von Mises stress, indicated through selected isosurfaces in the Plate data set. The highlighted part of the fracture (orange) shows
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(b) Fracture growth velocity in ms~!.

Figure 8: Fracture progression and growth velocity in the Bunny data set at time ¢ = 1000 x 1077,

7. Results

With the temporally-stable ridge growing process, we are
able to estimate additional quantities in the fracture geometry,
like temporal progression and fracture growth velocity. Note,
that the fracture growth velocity is the velocity at the crack sur-
face and the velocity v(¢,X) is the velocity at the material point
X. Now, we are able to provide the fracture growth velocity,
in addition to the velocity provided by the peridynamic sim-
ulation. This information allows for visualizing the temporal
progression of the whole fracture, e.g., Figure 8a, or the distri-
bution of growth velocities (Figure 9) and the temporal progres-
sion of the crack front, e.g., Figure 8b, within a single image.

In Section 5, we discussed temporal instability when ex-
tracting ridges in consecutive time steps. We therefore proposed
ridge growing to assure temporal stability, which we evaluated
with the given data sets in terms of usability and obtained sat-
isfying results, e.g., shown in Figures 8 for the Bunny and 11
for the Kalthoff Winkler data set. Despite flickering and visual
clutter in the unfiltered temporal ridges, we were able to ob-
tain temporally stable fracture progression while all important
features in the reference ridges are captured.
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Figure 9: Distribution of growth velocities per area enables comparison of the
results for the variations of the Plate data set.

7.1. Data Sets

For the validation of our technique for the visualization of
fracture dynamics using height ridge extraction and the stress
visualization, we use three example data sets. The first two
of them, the plate and the Stanford bunny, were run with the
peridynamic package of LAMMPS [56] and the bond-based
prototype microelastic brittle (PMB) [41] material model. The
Kalthoff Winkler experiment was simulated with Peridigm [57]
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Figure 10: Sketch of the measurements in mm of the plate data set.

and the elastic material model.

7.1.1. Plate Data Set

Figure 10 is a sketch of the geometry of the thin plate,
which is hit by a spherical projectile. The thin plate was scat-
tered with 189035 nodes of a regular grid with a spacing of
5x 10~*m. The material was modeled with a stiffness con-
stant of ¢ = 1.6863 x 1022, a critical stretch for bond failure of
sc = 5x 10~*m and a material density of p = 2200kgm 3. A
spherical projectile hits the plate with a velocity v = 100ms~!
and the time step size was set to 5 x 10~7s. Note, that these
material parameters are the initial values for the data set. In
Section 7.4, these parameters are changed to study the variation
in the fracture progression depending on them.

7.1.2. Stanford Bunny Data Set

For the simulation of the Stanford bunny, we scattered its
reconstructed surfaces with 1787229 nodes on a regular grid
with a spacing of 5 x 10~*m (Figure 12) and model its ma-
terial with a bulk modulus K of 210 x 10° Pa, a critical stress
intensity factor of Ky, of 2 x 10° Pa \/m, and a material density
p of 3369 kgm™>. The projectile hits the bunny with a velocity
of 100ms~! and the time step size was set to 107 s.

7.1.3. Kalthoff Winkler Data Set

The Kalthoff Winkler (KW) experiment is the peridynam-
ics simulation of a cylinder pressing on the upper mid of a
plate. Next to the cylinder are two initial cracks to the mid
of the height (Figure 13). The plate was scattered with 37962
nodes with an initial spacing of 2.5 x 1079 m, 5 x 107> m, and
1 x107*m in each direction. The material parameters are
a bulk modulus K of 14.9 x 10° Pa, a shear modulus u of
8.94 x 10° Pa, and a material density p of 2200kgm™>. The
velocity of the cylinder pressing on the plate is 30ms~! and
20ms~!. For the geometry and velocities, we used the same
as provided by Raymond et al. [49]. Because of the compari-
son of our results with the experimental data and the smoothed-
particle hydrodynamics simulation (SPH) there in Section 7.8.

7.1.4. Simulation Details

All the simulations were run on the Atacama cluster. Ta-
ble 2 shows some details of the simulation of all three data
sets. All simulations were run on one up to four Dell Pow-
erEdge M620 nodes with 16 Intel(R) Xeon(R) CPU E5-2650
v2 @ 2.60 GHz CPU and 64 GB memory per node.

7.2. Parameter Settings and Timings

Table 3 lists the data sets we use for evaluation, along with
respective average timings for the different computations steps
and parameter settings. For the Plate data set, calculation of the
ridges was performed for each time step as described in Sec-
tion 4, where the gradient and Hessian per material point were
calculated using a radius of d, = 0.002 for the least squares fit-
ting. The radius d, is chosen large enough to obtain stable gra-
dients and as small as possible to not smooth away important
information. The tetrahedral grid resulting from the Delaunay
triangulation was filtered such that cells with a maximum edge
length above d, = 0.002 were removed. This threshold is de-
fined interactively by the user such that the surface of the object
is clearly visible and no holes appear at the fractured areas. The
possibility of choosing thresholds interactively is requested by
application scientists, as an automatic choice might hide impor-
tant and unexpected information, for example effects caused by
the modeling approach and its parameters. During the calcula-
tion of the ridge geometry with marching tetrahedra, nodes with
a damage value c(#,X) below 0.1 are skipped and no triangles
are generated for these nodes. This damage threshold was used
for all generated ridges on all data sets, as it is low enough that
no ridge that describes a possible fracture is missed but visual
clutter is reliably removed. For the variations of the Plate data
set shown in Figure 14, the ridges were all calculated with the
same parameters except for the maximum edge length which
was set to d, = 0.0015 for Plate 1, 4 and 6.

The ridges in the Bunny data set, shown in Figure 8, were
also generated with d, = 0.002 and d, = 0.0015, while we used
d, = 0.004 and d, = 0.005 for the Kalthoff Winkler data set,
shown in Figure 11.

The geometry of each selected reference time step was fil-
tered and small fragments were removed. This step is interac-
tively performed by the user, to remove all fragments that do not
describe fractures and to get a clear depiction of the fractures of
interest. Note, that this filter is only applied to clean up the ref-
erence state, but not the ridges of the previous time steps, as
it could potentially remove small fragments of arising fractures
that would be missed in the fracture progression calculation, as
discussed in Section 5. For the ridge growing process, we used
a distance threshold d, = 0.0005 for the Plate and its variations,
0.0001 for the Bunny, and 0.002 for the Kalthoff Winkler case.

As discussed in Section 5, we consider the last time step of
a series to be reference time step. In the Bunny and the Kalthoff
Winkler data sets, we used the last time step of the simulation

Table 2: Simulations details for all three data sets.

Plate Bunny KW
Material PMB PMB Elastic
Time step size [s] 5%1077  107° 1.6 x 107?
Time steps 1000 1000 199
Number of nodes 189035 1787229 1616040
Nodal spacing [m] 5x107%  5x107*  25x107°
Computation time [h]  0.18 48 3
Cores 16 64 16
Simulation Tool LAMMPS LAMMPS Peridigm
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(a) Fracture progression in s.

(b) Fracture growth velocity in ms™".
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Figure 11: Fractures in the Kalthoff Winkler data set at time r = 1.58421 x 10~*s. In (c), the camera position was changed to highlight the angle.

Table 3: Calculation timings (in seconds), and employed parameter settings for the shown data sets (— " — denotes “same as above”). Timings for the least squares,
tetrahedralization, and ridge calculation are on average per time step, while timings for the ridge growing are the sum over all processed time steps. Measurements

were taken on a Core i17-4770 CPU @ 3.40 GHz.

Data set #Steps LSq. (@) Tet. () Ridge (@) Grow (}) de d, dg < c(t,X)
Plate 100 2.981 1.207 0.843 412.2 0.002  0.002 0.0005 0.1
Plate 1 60 2.813 1.399 0.921 440.5 0.0015 -"— -"— -"—
Plate 2 60 2.801 1.410 0912 319.3 0.002 "= -"— -"—
Plate 4 80 3.172 1.636 0.925 529.7 0.0015 "= ="= "=
Plate 6 100 3.126 1.649 0.900 594.9 =" =" -"— ="
Bunny 100 45.037 57911 8.255 1785.5 -"— "= 0.0001 ="—
KW 100 0.192 0.287 0.136 72.3 0.005 0.004 0.002 "=
B 50
50
200

Figure 12: Plot of the peridynamic material points of the bunny. The size of the
scattered bunny is [—0.04,0.04]m x [—0.03,0.04] m x [—0.06, 0] m.

as reference. However, the considered time range is not neces-
sarily defined by the simulation, but a naturally a scientist can
define the last time step of interest. This can be useful when
the fracture growth has come to a complete stop early, or when
after a certain step the structure starts to degrade significantly.
For instance, Figures 1b and 1c show the Plate data set at time
t = 800 x 10~ 7s. For the variations of the Plate (Figure 14)
the fracture growth behaves differently, and different final time
steps were chosen (cf. Table 3, “#Steps”).

Average timings for the different calculation steps per time
step are given in Table 3. The variations in the timings of the
ridge and tetrahedral grid calculations are due to the different
shapes and numbers of nodes, which leads to varying numbers
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Figure 13: Sketch of the Kalthoff Winkler experiment. Distances are in mm.

of tetrahedral cells. The timing of the gradient and Hessian cal-
culation depends mostly on the number of nodes and the choice
of the radius d,. Calculation timings for the complete ridge
growing process over all time steps vary with the selected ref-
erence time step and the size of the data sets.

7.3. Thin Plate

Figure 1b shows the temporal development of the fractures
in the Plate data set. The projectile hits the plate in the center
from above and our visualization shows that the fractures begin
at the point of impact (blue color) and then grow quickly toward
the opposite site, while the crack fronts move steadily toward
the boundary of the plate.

Our visualization of the growth velocity (Figure 1c) shows
that the cracks grow steadily in the center area of the plate with
only small variations. The velocity of the crack fronts peaks



(e) Plate 1, 7 = 600 x 10~ 7s. (f) Plate 2, 7 = 600 x 10~ 7s.

Figure 14: Visualization of fracture dynamics in variations of the Plate data set. Time is given in s and velocity in ms™".

shortly before they approach the boundary, where velocity de-
creases again. The figure also shows that the crack front is
not straight such that fractures appear earlier at the top of the
plate than at the bottom. Just before the crack front reaches the
boundary, additional crack fronts appear in this area and grow
toward the center. Shortly after the initial crack, a horizon-
tal fracture occurs which grows much slower than the central
cracks. This horizontal fracture could not be observed with pre-
vious techniques, like the direct rendering of the data set using
spheres. This general fracture behavior can also be observed in
the variations of the data set as shown in Figure 14. Differences
can be observed in the number of fractures as well as the time
it takes for them to form. The horizontal fracture is observable
in all variations but differs in growth velocity and size.

7.4. Variations of the Thin Plate

Figure 14 shows the fracture dynamics for different varia-
tions of the material parameters of the bond-based peridynamic
PMB material model for the same geometry of the plate and
the spherical projectile (see Section 7.1.1). Table 4 shows the
parameter space for the variation of the thin plate for this small
study. The parameter a € [0, 1) controls the elasticity of the
material. The influence of the parameter to the simulation is
studied with uncertainty quantification by Franzelin et al. [58]
with the result that for o = 0.25 the simulation is stable with
respect to the discretization. From the uncertainty quantifica-
tion the domain scientist receives a single value or range where
his quantity of interest is stable with respect to the discretiza-
tion. With our new technique the domain scientist can compare

Table 4: Variation of the parameter space for the thin plate in this small study.

Figure o Force density in Nm—2
1b 0.25 1x10%
14a 0.50 1x10¢
14b 075 1x10
l4¢ 0.25 1x10
14d 0.25 1x107

(c) Plate 4, r = 800 x 10~ 7s.
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0.000e+00

(2) Plate 4, = 800 x 10 7s.

(h) Plate 6, ¢t = 1000 x 10~ 7s.
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the unstable with stable fracture dynamics visually and inves-
tigate where the instability arises. Figure 1b shows the simu-
lation for o0 = 0.25, Figure 14a for a o = 0.5, and Figure 14b
for ¢ = 0.75. For Figure 14a the ridges develop from the cen-
ter to the boundary (long straight ridges) and get reflected there
and then grow back to the center (small ridges left and right to
the long ridges). For a = 0.75 in Figure 14b, we see the same
long ridges from the center to the boundary. In comparison to
Figure 1b, some ridges from the center start to bifurcate before
hitting the boundary and the reflected ridges at the boundary are
longer. The orbital ridge starts closer to the center and is con-
sistent until the point where the reflected ridge hits the orbital
ridge. For Figure 14a, we see that it has more similarity with
Figure 14a. In comparison, the shape of the reflected ridges is
different and the long ridges do not process directly from the
center and arise later. For Figure 14c and Figure 14d where the
force of the spherical projectile is changed, we see that the re-
flected ridges are longer and the orbital ridge is additional. For
the velocities in Figure 14g and Figure 14h, we see that the ve-
locities are similar. The extracted ridges give more insight in
the behavior of the stability as the single scalar value from un-
certainty quantification. Thus, our tool provides more complex
details of fracture progression, but a detailed discussion with
respect to material science would be out of the scope of this

paper.

7.5. Kalthoff Winkler Experiment

In the Kalthoff Winkler data set (Figure 11), our ridge ex-
traction technique clearly shows the temporal progression of
the two crack fronts that grow from the center toward the lower
edges of the block. The growth velocity of the crack fronts
is steady with peaks in the center area. The fractures in the
Bunny data set (Figure 8) form initially at the impact point
and then progress radially through the object. Our visualization
technique shows that most fractures grow steadily while some
fractures only appear some time after the impact and are even
unconnected to previous fractures. The crack fronts are evenly
shaped with no preferred growth direction. In all examined data



sets we could observe similar velocities for the fracture growth,
which are in average around 1 x 103 to 2 x 10° ms™! with few
high peaks, that may be due to deviations of the temporal ridges
to the reference state. The observed velocities are in the same
ranges as obtained in experiments [59, 60]. Thus, the values of
the fracture growth velocity seem to be physically credible.

7.6. Stanford Bunny

With the Stanford bunny we apply our visualization tech-
nique to a complex geometry. Figure 3b shows the visualiza-
tion of the scattered nodes of the Stanford bunny with colorized
spheres. Here at the mid of the bunny where the spherical pro-
jectile impacted, there are plenty of red spheres. At the ears, at
the neck, and the throat of the bunny there are small red lines
which can be interpreted as cracks. First, the analysis of the
cracks in this complex geometry is difficult, because the do-
main scientist cannot see what is happening in the inside of the
bunny. Second, it is hard to decide where the crack surfaces are
located between the red line of particles at the ears, or the neck,
or the throat of the bunny. With the volume rendering of the
node-based data and the visualization of the extracted ridges
with our technique shown in Figure 8, a more global view of
the development of the crack is provided. Thus, the domain
scientists see the shape of the bunny with the volume rendering
technique and the fracture progression via the extracted crack
surfaces. With the fracture progression and the fracture growth
velocity the behavior of crack and fractures, even in complex
geometries are feasible. Note, that the variation of the plate
was used to study the influence of parameters and the Katlhoff
Winkler experiment for the comparison with experimental data.
The Bunny data set was used to validate our visualization ap-
proach for complex geometries rather than the interpretation of
the results with respect to experimental data or other simulation
techniques.

7.7. Multi-Field Visualization for Fracture Analysis

Figure 7 shows the combination of the fracture progression
and the von Mises stress. With the selected isosurfaces of the
von Mises stress we see how the stress at the crack tip behaves.
For the blue part of the stress, we see a blue inner and outer
isosurface at + = 620 x 10~ 7s. After 20 x 10~ s, the inner and
outer isosurfaces are connected and around the main crack tips
we observe a shape looking like a sombrero. After additional
20 x 10~ ’s small inclusions around the main crack tips occur
and the isosurface at the boundary of the geometry looks much
smoother.

Figure 6 shows the principal stress directions e and ez for
the largest eigenvalue A; and the smallest eigenvalue A3. In
Figure 6a, we see that the directions of the eigenvectors of the
largest eigenvalue A; (the maximal principle stress) are orthog-
onal to the extracted ridges of the main crack branches. Fig-
ure 6b shows the direction of the eigenvectors of the smallest
eigenvalues A3 (the minimal principle stress). These are aligned
to the extracted surfaces of the ridges. From a physical point
of view this behavior of the minimal principal stress and the
maximal principal stress is plausible. The visualization of these
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values could be applied to understand how cracks bifurcate and
to obtain a better understanding of the peridynamics theory.

7.8. Verification with Experimental Data

In Sections 7.3—7.7 we focused on the interpretation of the
results with respect to the new features our tool provides. Here,
we focus on the comparison to experimental data and other
simulation approaches. The reference for the comparison is
the Kalthoff Winkler experiment. This experiment is standard
problem in dynamic fractures [49, 3]. Raymond et al. [49]
simulated the KW experiment with smoothed-particle hydrody-
namics and compared with the experimental results by Kalthoff
and Winkler [61] (Table 5). The provided geometry, materials
parameters, and parameters for the experiment were used to set
up the simulations with Peridigm [57]. Note that for the SPH
results, we do not know how and where the fracture growth ve-
locity was measured.

For our experiments, we have evaluated the fracture growth
velocity based on the extracted values of our new analysis. As
it can be observed in Figure 14b for a KW experiment with
different parameter settings, there are several types of cracks.
The micro-fractures in the completely damaged region of im-
pact in the middle leads to a vast mix of low and high local
velocities. The fracture growth velocity, however, should be
measured at the main fractures branching off. We therefore ex-
cluded the part of the simulation domain below the cylinder that
indents the plate and where the plate is completely shattered.
We then computed the average fracture growth velocity over
the last time steps, more precisely the last 18 % of the overall
simulation time. This restricts the simulation to the last major
parts of the main cracks until the end of the simulation, where
they reach the domain boundary (cf. Figure 14b).

The average velocity that we measure is 1142 m/s, the me-
dian 1144 m/s. This matches very well the results obtained both
in experiments and with SPH. Figure 15 shows the histogram
of the fracture growth velocity of the Kalthoff Winkler exper-
iment. We can observe that we have small cracks (or exten-
sions of the large cracks) with distinct low and high velocities,
which indicates that peridynamics might favor certain veloci-
ties. But the main velocities can be measured around the peak
at ~1140 m/s.

Our new analysis methodology allows us to study such
simulation-dependent properties more in depth than possible
before. For example, we observe a short peak of crack propaga-
tion velocities in the KW experiment of a non-physical velocity
of around 5000 m/s after 47 % of the simulation time. There,
two distinct vertical cracks evolve which are well-aligned to the

Table 5: Fracture growth velocity obtained by experiment by Kalthoff and
Winkler [61], smoothed-particle hydrodynamics (SPH) simulation[49], and our
peridynamics (PD) results.

T

Setting Fracture growth velocity in ms™
Experiment 1000

SPH 1200

PD mean: 1142, median: 1144
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Figure 15: Histogram of the fracture growth velocity over the last 18 % of the
simulation time of the Kalthoff Winkler experiment with an initial velocity of
20ms~! for the cylinder setup. The scenario excludes the inner part of the
domain below the cylinder. There, the plate is completely destroyed.

grid structure of the particles, connecting several horizontally-
aligned cracks. This gives strong evidence that the initial distri-
bution of the nodes on a Cartesian, crystal-like grid has signifi-
cant (and, depending on the material, possibly non-physical) in-
fluence on the simulation results. A preference for axis-aligned
cracks can also be observed visually in most visualizations in
this paper. However, a sound analysis will require more study
with respect to the peridynamics model in this regard.

8. Conclusion

In this paper, we gave a brief introduction to peridynam-
ics simulation and presented our technique for the extraction of
fracture geometry from node-based peridynamics data sets us-
ing height ridges. The ridges from each time step are calculated
directly on the tetrahedralized input data based on marching
tetrahedra. Based on the result of ridge extraction, we proposed
a technique for obtaining temporally stable ridge growth by pro-
gressively combining temporal ridges into a reference state. We
showed how this growth process can be used for the visualiza-
tion of temporal fracture progression and depiction of growth
velocity by combining them into a single spatiotemporal state.
We also examined the physical mechanisms of the peridynam-
ics simulations in terms of von Mises stress and principal stress
directions to reveal fracture dynamics, and evaluated our ap-
proach and demonstrated its utility by means of different data
sets. Finally, our new approach enabled us to compare against
experiments and simulation results in the literature. It further-
more builds the basis for further studies of the effects of the
discrete modeling approach using peridynamics.

For future work, we would like to evaluate our approach on
a larger variety of peridynamics data sets. We observed a small
drift of the material points in the evaluated data sets, which our
temporally-stable ridge extraction approach was able to han-
dle. But this may become an issue if the drift gets larger in
later time steps. A possible approach to handle this is to dy-
namically morph the reference ridge accordingly. We observed
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some increased calculation timings for the ridge growing pro-
cess for large data sets, like the Bunny, due to complex ridge
geometry. Therefore, we would like to investigate strategies for
performance optimization, such as parallelization.
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